Synthesis and Reactions of Perylenecarboxylic Acid Derivatives. VII. Hydrolysis of N,N'-Dialkyl-3,4:9,10-Perylenebis(dicarboximide) with Sulfuric Acid

Yukinori Nagao* and Takahisa Misono

Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, Yamazaki, Noda 278 (Received August 6, 1980)

Synopsis. The hydrolysis of N,N'-dialkyl-3,4:9,10-perylenebis(dicarboximide) (alkyl=CH₃, CH₂CH₃, CH₂CH₂-CH₃, and CH₂CH₂CH₂CH₃) with sulfuric acid at 180—200 °C gave N-alkyl-3,4:9,10-perylenetetracarboxylic monoanhydride monoimide (alkyl=CH₃, CH₂CH₃, CH₂CH₂CH₃, and CH₂CH₂CH₂CH₃). The kinetics of the reaction were determined spectroscopically.

Previous work has shown that 3,4:9,10-perylenetetracarboxylic monoanhydride monoimide (2a-e) can be prepared by the condensation of 3,4:9,10-perylenetetracarboxylic dianhydride (3) with alkylamine.¹⁾ The condensation of 2a—e with arylamine gave N-alkyl-N'aryl-3,4: 9,10-perylenebis(dicarboximide).2) This work was undertaken to examine whether 2b-e could be prepared N, N'-dialkyl-3,4: 9,10-perylenebisfrom(dicarboximide) (1b-e). 2a was prepared by the hydrolysis of 3,4:9,10-perylenebis(dicarboximide) (1a) with sulfuric acid.³⁾ The formation of 2b—e in the hydrolysis of 1b—e with sulfuric acid was then determined.

$$\begin{split} R = a; H, b; CH_3, c; CH_2CH_3, d; CH_2CH_2CH_3, \\ e; CH_2CH_2CH_2CH_3 \end{split}$$

Experimental

Materials. **1b—e**, **2b—e**, and **3** were prepared by the procedures reported before.¹⁾

Hydrolysis. A flask containing 50.0 ml of 95%-sulfuric acid was set in a thermostated bath at the reaction temperature. To the flask was added 50 mg of finely powdered 1b—e with stirring, and the reaction mixture was stirred to provide complete mixing. A small amount of the mixture was taken at an appropriate time interval. One half of the sample was used for measurement of absorbance after dilution with 95.0%-sulfuric acid and another half of the sample was poured into water to precipitate organic materials. These were separated by contrifugation, dried, dissolved in 1% potassium hydroxide, and analyzed by paper chromatography.

Measurements and Calculations. Absorbances were measured with a Hitachi 101 Spectrophotometer. The determination of the reaction mixture and paper chromatography were carried out as in the experiment reported before. The calculations of composition or rate ratio $K(=k_2/k_1)$ were made by IBM 370 computer.

Results and Discussion

In the reactions at 180—200 °C, all the reaction mixtures have been proved to contain only three components, **1b—e**, **2b—e**, and **3** by paper chromato-

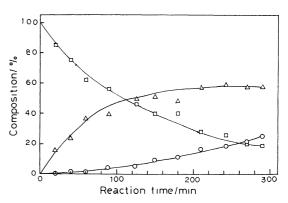


Fig. 1. Reaction of N,N'-dipropyl-3,4:9,10-perylenebis (dicarboximide) (1d) with H_2SO_4 .

Reaction temp: 180 °C. $\square: N,N'$ -Dipropyl-3,4:9,10-perylenebis(dicarboximide) (1d), \triangle ; N-Propyl-3,4:9,10-perylenetracarboxylic monoahydride monoimide (2d), $\bigcirc: 3,4:9,10$ -Peryleneteracarboxylic dianhydride (3).

Table 1. The maximum yields of N-alkyl-3,4:9,10-perylenetetracarboxylic monoanhydride monoimide $(\mathbf{2b-e})$

N,N'-Dialkyl-3,4: 9,10-perylenebis- (dicarboximide)(1b—e) R		Temp °C	Time	Maximum yield of 2b—e
1b	CH ₃	$ \left\{ \begin{array}{c} 180 \\ 190 \\ 200 \end{array} \right. $	270 200 100	44 48 47 } 2b
1c	CH ₂ CH ₃	$ \left\{ \begin{array}{c} 180 \\ 190 \\ 200 \end{array} \right. $	220 140 40	$ \left. \begin{array}{c} 55 \\ 49 \\ 45 \end{array} \right\} \ \mathbf{2c} $
1d	$\mathrm{CH_2CH_2CH_3}$	$ \left\{ \begin{array}{c} 180 \\ 190 \\ 200 \end{array} \right. $	240 80 40	$\left. egin{array}{c} 58 \\ 56 \\ 50 \end{array} ight\} \mathbf{2d}$
1e	CH ₂ CH ₂ CH ₂ CH ₃	$ \left\{ \begin{array}{c} 180 \\ 190 \\ 200 \end{array} \right. $	180 150 40	$\left.\begin{array}{c}53\\47\\40\end{array}\right\}\mathbf{2e}$

graphy. The compositions in the reaction mixture were determined by spectroscopy. The contents, $C_{\rm I}/(C_{\rm I}+C_{\rm M}+C_{\rm A})$, $C_{\rm M}/(C_{\rm I}+C_{\rm M}+C_{\rm A})$, and $C_{\rm A}/(C_{\rm I}+C_{\rm M}+C_{\rm A})$ where $C_{\rm I}$, $C_{\rm M}$, and $C_{\rm A}$ are the concentrations of **1b—e**, **2b—e**, and **3**, respectively, were obtained from the standard absorbances of **1b—e**, **2b—e**, and **3**. Figure 1 shows a typical reaction curve. The pattern was similar in all reactions. As the reactions proceed, the yields of **2b—e** initially increased, but decreased after reaching a maximum. The maximum yields of **2b—e** were compared. Table 1 gives the maximum yields of **2b—e** in the reactions at 180, 190, and 200 °C. It is shown

that all the values are in the range of 40—60%; the value is the smallest in **1b** and increases a little at lower temperature. The yields of **2b—e** isolated from the reaction mixture at 180 °C were **2b**: 31%, **2c**: 31%, **2d**: 31%, **2e**: 41%. Thus the yields of separable **2b—e** are lower than the spectroscopic yields in Table 1, because of the difficulty of their separation.

There was a scattering of the data points on a reaction curve as the concentration of **1b—e** increased over 100 mg/50 ml sulfuric acid; this became more serious at higher temperature, and was the largest in **1b** and the smallest in **1d**. In the reaction of **1a**, 3) no scattering was observed in ten times the concentration (500 mg/50 ml). This was attributed to the fact that the solubility of **1b—e**, which has an alkyl group, is smaller than that of **1a**. For these reasons, more sulfuric acid is necessary for the preparation of **2b—e** from **1b—e** than that from **1a**.

Plots of $\ln(C_{\rm I}/C_{\rm Io})$, where $C_{\rm Io}$ is the initial concentration of **1b—e**, vs. time are linear in the reaction of

Table 2. Rate constant k_1 and rate ratio $K(=k_2/k_1)$ Reaction temp, 180 °C

N, N-Dialk bis (dica	yl-3,4:9,10-perylene- arboximide)(1b—e) R	$\frac{k_1 \times 10^2}{\min^{-1}}$	$K(=k_2/k_1)$
1b	CH ₃	0.472	0.420
1c	CH_2CH_3	0.929	0.420
1d	$\mathrm{CH_2CH_2CH_3}$	0.572	0.360
1e	$\mathrm{CH_2CH_2CH_2CH_3}$	0.920	0.500

50 mg **1b—e** at 180 °C. The rate constants k_1 , for the reaction of **1b—e** to **2b—e**, were calculated from the slope. The rate ratios $K(k_2|k_1)$, where k_2 is the rate constant of **2b—e** to **3**, were calculated from Eq. 1.1 Most of the values in each reaction were constant. These results indicated that the reaction followed a pseudo-first-order process. The rate constants k_1 and

$$C_{\mathbf{M}}/C_{\mathbf{Io}} = \{1/(1-K)\}\{(C_{\mathbf{I}}/C_{\mathbf{Io}})^{K} - (C_{\mathbf{I}}/C_{\mathbf{Io}})\}$$
(1)

rate ratio K are given in Table 2. All the rate constants are in the range of $0.45-0.95\times10^{-2}\,\mathrm{min^{-1}}$, and the rate ratio K are in the range of 0.35-0.50. A longer alkyl chain decreased the rate constants and ratios in the condensation of $\mathbf{3}$ with alkylamine, but there was no such significant effect of alkyl groups in this reaction. All the k_1 values of $\mathbf{1b-e}$ were smaller than that of $\mathbf{1a}$ ($k_1=1.06\times10^{-2}\,\mathrm{min^{-1}}$). Polar substituent constant σ^* are: H:+0.490, $CH_3:0.000$, $C_2H_5:-0.100$, $n\text{-}C_3H_7:-0.115$, $n\text{-}C_4H_9:-0.130.4$) The large k_1 value in $\mathbf{1a}$ is related to the polar effects of N-substituents.

References

- 1) Y. Nagao, Y. Tanabe, and T. Misono, Nippon Kagaku Kaishi, 1979, 528.
- 2) Y. Nagao, N. Ishikawa, Y. Tanabe, and T. Misono, Chem. Lett. 1979, 151.
- 3) Y. Nagao and T. Misono, Kogyo Kagaku Zasshi, 74, 2500 (1971).
 - 4) R. W. Taft, Jr., J. Am. Chem. Soc., 75, 4231 (1953).